DEA CLANDESTINE LABORATORY TRAINING CENTER


DAVID M. POTCHAK

PENN STATE UNIVERSITY ARCHITECTURAL ENGINEERING MECHANICAL OPTION

- BACKGROUND INFORMATION
- EXISTING MECHANICAL SYSTEMS
- Redesign Objectives
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

- BACKGROUND INFORMATION
- EXISTING MECHANICAL SYSTEMS
- REDESIGN OBJECTIVES
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

BUILDING LOCATION

MARINE CORPS BASE - QUANTICO, VA

BUILDING LOCATION

DEA TRAINING ACADEMY CAMPUS

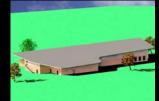
BACKGROUND INFORMATION

- EXISTING MECHANICAL SYSTEMS
- Redesign Objectives
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

ARCHITECTURE

SLAB-ON-GRADE WITH MASONRY FACADE

One Story Plus Mechanical Mezzanine



CURVED ROOF OUTLINE FORMS DEEP CANOPIES

ARCHITECTURE

STRIP-EFFECT OF CLERESTORY WINDOWS

BUILDING USE

BUILDING USE

• BACKGROUND INFORMATION

- EXISTING MECHANICAL SYSTEMS
- REDESIGN OBJECTIVES
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

PURPOSE: PREPARE TRAINEES FOR CAREER LABORATORY: METH IS PRODUCED

MULTIPLE FUNCTIONS:

- CLASSROOMS
- LABORATORY SPACES
- PHYSICAL TRAINING AREAS
- RAID FACILITY
- FIREARMS TRAINING FACILITY
- OFFICES AND SUPPORT AREAS

CONTAMINANTS PRESENT IN EXHAUST:

- HYDROCHLORIC GAS
- PHOSPHINE GAS
- IODINE PARTICULATE
- VAPORIZED METHAMPHETAMINE

✓ BACKGROUND INFORMATION

- EXISTING MECHANICAL SYSTEMS
- REDESIGN OBJECTIVES
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

HEATING SYSTEM

Two 1,500 MBH NATURAL GAS BOILERS

HEATING HOT WATER:

- HEATING COILS IN AIR HANDLING UNITS
- CABINET UNIT HEATERS
- FINNED-TUBE RADIATORS
- VAV Box Reheat Coils

ULTRASONIC HUMIDIFIERS

COOLING SYSTEM

Two 105 Ton Air-Cooled Scroll Chillers

CHILLED WATER:

- COOLING COILS IN AIR HANDLING UNITS
- No Dehumidification Equipment

DX UNITS IN ELECTRIC/LAN ROOMS:

- REFRIGERANT (R407C) EXTRACTS HEAT
- REMOTE CONDENSERS

- ✓ BACKGROUND INFORMATION
- EXISTING MECHANICAL SYSTEMS
- REDESIGN OBJECTIVES
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

AIR HANDLING

FIVE AHU'S IN MECHANICAL MEZZANINE

AIR HANDLING UNITS

AHU's 1 & 3:

- VARIABLE FREQUENCY DRIVE
- ECONOMIZER MODE
- TOTAL: 20,300 CFM 3,590 CFM OA

AHU 2:

- VARIABLE FREQUENCY DRIVE
- 100% OA UNIT: 8,040 CFM

AHU's 4 & 5:

- CONSTANT VOLUME
- TOTAL: 2,650 CFM 1,220 CFM OA

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- Redesign Objectives
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

REDESIGN OBJECTIVES

RECOVER WASTED ENERGY FROM LABS, CLASSROOMS, AND OFFICES

LAB HEAT RECOVERY:

- PREVENT CROSS-CONTAMINATION OF SUPPLY AIRSTREAM
- RECOVER LATENT ENERGY IF POSSIBLE
- MINIMIZE SYSTEM RECONFIGURATION

REDESIGN OBJECTIVES

CLASSROOM AND OFFICE ENERGY RECOVERY:

- MAINTAIN ECONOMIZER MODE CAPABILITY
- RECOVER LATENT ENERGY IF POSSIBLE
- MINIMIZE SYSTEM RECONFIGURATION

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT
 <u>Re</u>covery
- ELECTRICAL BREADTH
- CONCLUSIONS

ALTERNATE METHODS

USING CHILLED WATER TO PREHEAT OUTDOOR AIR

BENEFITS:

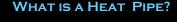
- LESSENED CHILLER AND BOILER LOADS
- WILL PREVENT CROSS-CONTAMINATION
- MINIMAL SYSTEM RECONFIGURATION

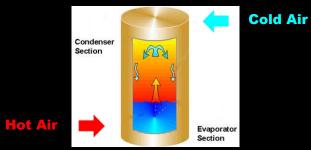
WHY NOT?

- LIMITED AVAILABILITY
- PREHEAT CONSTRAINED BY CHILLED WATER TEMPERATURE

ALTERNATE METHODS

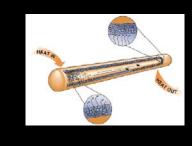
LAB HEAT RECOVERY OPTIONS:


	Effectiveness	Latent Recovery	Availability of Use	Prevention of Cross- Contamination	Duct Reconfiguration Required	
Membrane	High	Yes	Continuous	No	Yes	
Enthalpy Wheel	High	Yes	Continuous	No	Yes	
Chilled Water as Preheat	High	No	Limited	Yes	No	
Heat Pipe	Good	No	Continuous	Yes	Yes	
Run-Around Loop	Moderate	No	Continuous	Yes	No	


CHOOSE HEAT PIPE

✓ BACKGROUND INFORMATION

- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS



UPRIGHT HEAT PIPE: RELIES ON BUOYANCY

HEAT PIPE

HORIZONTAL CONFIGURATION

WORKING FLUID FLOWS THROUGH WICK OR CAPILLARY STRUCTURE

CYCLES VIA PRESSURE DIFFERENTIAL

COOLING AND HEATING SAVINGS FROM ONE CONFIGURATION

CHOOSE HORIZONTAL CONFIGURATION

HEAT PIPE SELECTION

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

HEAT PIPE TECHNOLOGY, INC.: MODEL HRM-6R

- CAPABLE OF HORIZONTAL CONFIGURATION
- SIZED FOR MAX FLOW OF 8,040 CFM
- FINS-COAT, EPOXY-LIKE COATING
- BYPASS DAMPER INCLUDED

HEAT PIPE MODEL

ANALYSIS:

- Continuous Operation Throughout Year
- HOURLY WEATHER DATA FROM TMY2 FILE
- ASSUME CONSTANT, TIME-WEIGHTED FLOW OF 3,560 CFM
- USE CONSTANT EFFECTIVENESS = 0.56
- Use Average Utility Rates

✓ BACKGROUND INFORMATION

- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

ANALYSIS RESULTS

COOLING SAVINGS: 17,800,000 Btu/yr

HEATING SAVINGS: 166,600,000 Btu/yr

EQUIPMENT INPUT SAVINGS:

CHILLER SAVINGS: 1,980 kWh/yr

BOILER SAVINGS: 204,400,000 Btu/yr

ADDITIONAL FAN ENERGY: FAN ENERGY: 5,900 kWh/yr

ANALYSIS RESULTS

ELECTRICAL INPUT SAVINGS: -3,900 kWh/yr

NATURAL GAS INPUT SAVINGS: 204,400,000 Btu/yr

ELECTRICAL COST SAVINGS:

-\$319 per year NATURAL GAS COST SAVINGS: \$2,819 per year

TOTAL ANNUAL SAVINGS: \$2,500

LIFE CYCLE COST ANALYSIS

LIFE CYCLE COST ANALYSIS

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

PRESENT VALUE OF SAVINGS:

- 20 YEAR PERIOD
- •5% Fixed Interest Rate
- ASSUME NO INFLATION OR MAINTENANCE COSTS
- PV = \$49,990

INITIAL COST OF HEAT PIPE:

- Assume Installation is Included
- •\$1,120

TOTAL PRESENT VALUE: \$48,870

ENTHALPY WHEEL SELECTION

ION ENTHALPY WHEEL MODEL

ANALYSIS:

✓ BACKGROUND INFORMATION

- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- ✓ LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

AIROTOR BY XETEX, INC.: MODEL AHR 1600

- SIZED FOR TOTAL MIN OA FLOW OF AHU'S 1 & 3
- BYPASS DAMPER INCLUDED

• OPERATES 12 HOURS PER DAY, 5 DAYS PER WEEK

- HOURLY WEATHER DATA FROM TMY2 FILE
- Assume Constant Flow of 3,590 cfm
- USE CONSTANT EFFECTIVENESS = 0.77
- USE AVERAGE UTILITY RATES
- WHEEL STOPS IN ECONOMIZER MODE

ANALYSIS RESULTS

LIFE CYCLE COST ANALYSIS

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- ✓ LABORATORY HEAT RECOVERY
- CLASSROOM AND OFFICE HEAT Recovery
- ELECTRICAL BREADTH
- CONCLUSIONS

SAVINGS:

CHILLER: \$980 BOILER: \$1,690

HUMIDIFIER: \$1,520

ADDED COST:

FAN: \$300

MOTOR: \$1,330

TOTAL ANNUAL SAVINGS: \$2,560

PRESENT VALUE OF SAVINGS: \$51,300

INITIAL COST: \$14,400

TOTAL PRESENT VALUE: \$36,900

ELECTRICAL BREADTH

INTEGRATING ENTHALPY WHEEL INTO PANEL BOARD

MOTOR:

7.5 hp, 3 Φ , 460V \rightarrow 11 FLA

SIZING BRANCH CIRCUIT:

MCA = (11A)*(1.25) = **13.75 A**

(NEC 2005, TABLE 310.16)

THWN, 75°C, COPPER WIRE \rightarrow #12 AWG

ELECTRICAL BREADTH

EXCEPT FROM 240.4D:

OVERCURRENT PROTECTION SHALL NOT EXCEED 20A FOR #12 AWG

(NEC 2005, TABLE 430.52)

Percent of Full-Load Current = 200% MOPD = (11A)*(200%) = **22.0 A**

22A > 20A \rightarrow MUST USE #10 AWG

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- ✓ LABORATORY HEAT RECOVERY
- ✓ CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

✓ BACKGROUND INFORMATION

- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- ✓ LABORATORY HEAT RECOVERY
- ✓ CLASSROOM AND OFFICE HEAT RECOVERY
- ELECTRICAL BREADTH
- CONCLUSIONS

ELECTRICAL BREADTH

CIRCUIT BREAKER:

Must be Smaller than MOPD ightarrow 20A

- (NEC 2005, TABLE C-1): 1¹/₂" CONDUIT (ELECTRIC METALLIC TUBING)
- FINAL SIZING: (4) #10 AWG WIRES IN 11/2" CONDUIT 20A BREAKER

ELECTRICAL BREADTH

Panel					Breaker	
CKT #	Description	VFD/T	HP/kW	Load Amps	Load kVA	Amps / Poles
1	Humidifier H-1		•	9	4.3	15/2
2	Humidifier H-2			11	5.3	15/2
3	Humidifier H-3	1.		4	1.9	15/2
4	Humidifier H-4			3	1.4	15/2
5	AHU-1SF	15	VFD	21	17.4	30/3
	AHU-1RF	5	VFD	7.6	6.3	15/3
7	AHU-3SF	20	VFD	27	22.4	40/3
8	AHU-3RF	7.5	VFD	11	9.1	20/3
9	AHU-4SF	3	HP	4.8	4	15/3
10	AHU-5SF	1.5	HP	2.6	2.2	15/3
11	RF-5	0.5	HP	1	0.8	15/3
12	CHWP-1	15	HP	21	17.4	30/3
13	CHWP-2	15	HP	21	17.4	30/3
14	Washer Machine	1.3	kW	1.6	1.3	15/3
15	Washer Machine	1.3	kW	1.6	1.3	15/3
16	Hot Water Booster	9	kW	32.5	9	45/1
17	Panel PM2 via 30kVA Trans.	30	T	8.1	2.9	50/3
18	SPARE					15/3
19	Enthaloy Wheel	7.5	HP	13.75	6.6	20/3
20	OPAGE					
			TOTAL	3Φ Amps	163.75	
			TOTAL	kVA	131.6	

LIFE CYCLE COST REVISITED

THOUGHTS

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- ✓ LABORATORY HEAT RECOVERY
- ✓ CLASSROOM AND OFFICE HEAT RECOVERY
- ✓ ELECTRICAL BREADTH
- CONCLUSIONS

TOTAL ANNUAL SAVINGS \$5,060

TOTAL PRESENT WORTH \$85,800 • OVERALL, GOOD REDESIGN

- PREVENTED CROSS-CONTAMINATION
- MAINTAINED ECONOMIZER MODE CAPABILITY
- CONSIDER RUN-AROUND LOOP FOR LABS?

- ✓ BACKGROUND INFORMATION
- ✓ EXISTING MECHANICAL SYSTEMS
- ✓ REDESIGN OBJECTIVES
- ✓ ALTERNATE METHODS
- ✓ LABORATORY HEAT RECOVERY
- ✓ CLASSROOM AND OFFICE HEAT RECOVERY
- ✓ ELECTRICAL BREADTH
- ✓ CONCLUSIONS

QUESTIONS?

DEA CLANDESTINE LABORATORY TRAINING CENTER

DAVID M. POTCHAK

PENN STATE UNIVERSITY ARCHITECTURAL ENGINEERING MECHANICAL OPTION